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1 Overview

This report summarizes a project sponsored by the NASA Langley Research

Center through the Langley Grad-Aero Program under Grant No. NAG-l-1509.

The project was approved for the period May 6, 1993 - November 4, 1997. However,

due to reductions in NASA's budget and limited funds for the Grad-Aero Program,

funding was halted in November 1994. A one-year no-cost extension was requested

so that the student could attend the AIAA 1995 Aerospace Sciences Meeting. Dur-

ing that period supplemental funding was made available to support the student

over the summer of 1995. The extended termination date for the NASA grant was

November 5, 1995. The project has been continued by supporting the student as a

Teaching Assistant within the School of Aeronautics and Astronautics. Although

funding for this project was terminated, NASA Langley has continued to provide

access to their computer facilities.

The objective of this project was to evaluate and develop subgrid-scale (SGS)

turbulence models for large eddy simulations (LES) of compressible flows. During

the first phase of the project results from LES using the dynamic SGS model

were compared to those of direct numerical simulations (DNS) of compressible

homogeneous turbulence. The findings were published in Ref. [1-3]. Ref. [3] is

included ill this report as Attachment A.

It is becoming apparent within the LES community that numerical errors can

have a significant impact on large eddy simulations. Ref. [4] reports results of a

study on the effect of the formulation of the governing equations on alia.sing errors.

A copy of the galley proof for this paper is included as Attachment B.

The second phase of the project involved implementing the dynamic SGS model

in a NASA code for simulating supersonic flow over a flat-plate. The model has

been successfully coded and a series of simulations has been completed. One of

the major findings of the work is that numerical errors associated with the finite

differencing scheme used in the code can overwhelm the SGS model and adversely

affect the LES results. A brief write-up of the results [5] has been submitted to the

AIAA 1997 Aerospace Sciences Meeting and is included as Attachment C.

One of the goals of the Langley Grad-Aero Program is to train young researchers

in Aerospace Engineering and related fields. The student supported by this project,

Evangelos T. Spyropoulos, has performed very well. He has grown as a researcher in

the very difficult field of turbulence. In 1993 he participated in the ICASE/NASA

Langley summer workshop on Transition. Turbulence and Combustion. He again

visited NASA Langley during the summers of 1994 and 1995. It has been very

beneficial for him to interact with NASA personnel and with NASA visitors from

all over the world. Evangelos is currently finishing his Ph.D. dissertation and should

graduate this August. He is lc_king forward to a career in the aerospace industry

where he can put his understanding to good use.
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Evaluation of the Dynamic Model for Simulations of

Compressible Decaying Isotropic Turbulence

Evangelos T. Spyropoulos" and Gregory A. Blaisdell t

Purdue Universi_, West Lafa3,ette Indiana 47907

Several issues involving the use of the dynamic subgrid-scaie model in large-eddy simulations of Compressible
turbulent flows ar_ investigated. The model is employed in simulations of compressible decaying it,otropic fur.
Imlence, and its performance is compared against results frmn dh'tct numerical simulations and experiments.
Results from i parametric study suggest the model captur_ ¢omp_blllt 7 effects welL U_ o( the dynamic model
in simuindoa._ of inbomogeneo¢_ flows requires Iiltering of the flowfleid In physical space tither than Fourier wave
space. The use of spatial filters is examined by conducting slmu/aUons o¢"isotrnpic turlxtlence_ Several implicit
filters ar_ found to perform extt_mehy well and similar to the sharp cutoff filter. Oue explicit filter performed well,
but all others provided excessive dissipation at higher modes. Two formulations of the dynamic model, proposed
by Main et at. and Lilly, perform well, with Lllly's being more accurate. Results suggest also a grt_t Insensitivity of
the model on the filter width ratio. A modification of the convective terms in the momentum and energy equations
is found to rt,duce the effects of aii_ing errors. Finally, different formulations of the energy equation are examined.
A nonconservaUve form is found to be more accurate.

I. Introduction

N the past few years there has been a resurgence of interest inperforming large-eddy simulations (LES) of flows of engineering

interest. There am two roles for LES to play in the computation
of such flows. First. LES can be used to test lower order models:

k_. algebraic stress, and full Reynolds stress models. LES can

provide detailed data. which is difficult or impossible to measure

experimentally and which is at much higher Reynolds numbers than
can be reached by direct numerical simulation (DNS). Statistical

data and physical insight gained from these simulations can be used

to evaluate and improve the lower order models. With this approach.

however, the subgrid-scale (SGS) model used in the LES has to be
validated in order to ensure that the LES data are correct.

Second. LES can be used as an engineering tool rather than as a

research tool. With the expected increases in computer capabilities

in the near future, especially from the use of massively parallel
computers, it may be feasible to perform LES of flows of engineering

interest. LES will remain an expensive tool, but it will likely be the

only means of accurately computing complex flows for which lower
order turbulence modeis fail.

Recently, there has been much interest in using the dynamic

SGS model to perform LES. The dynamic model was first intro-

duced by Germano etal.' and was extented for use in compressible

flows by Main etal.: Since then, further refinements to the model

have been proposed. 3-_ The main advantage of the dynamic model

over other SGS models used in the past is that it requires little

prior experience with the type of flow being considered. The model

!dynamically) adjusts to the flow conditions by employing the re-

solved large-scale information to predict the effects of the small
scales.

So far, the dynamic model has been mostly tested in incompress-

ible turbulent flows and has been found to perform well. Main et al._-

applied the dynamic model to compressible decaying isotropic tur-

bulence and found that it performed well and better than using fixed

,,alues for the model constants. El Hady etal. 7 applied the model

Received Jan. 5. 1995: presented as Paper 95-0355 at the AIAA 33rd
Aerospace Sciences Meeting. Rend, NV. Jan. 11-I 4, 1995: revtston received
May 19. 1995; accepted for publication May 2.2, 1995 Copyright _ 1995
by the American Institute of Aeronautics and Astronautics, Inc. All rights
reserved.

"Graduate Assistant. School of Aeronautics and Astronautics Member
-kIAA.

"Assistant Professor, School of Aeronautics and Astronautlcs. Member
AIAA.

to a transitional supersonic axisymmetric boundary layer with satis-

factory results. However, a number of issues regarding the use of the
model in LES of compressible turbulence remain to be addressed.

such as the ability of the model to capture compressibility effects

without the need for explicit compressibility corrections.

In addition, there are issues that need to be addressed in applying

the dynamic model to inhomogeneous flows. The dynamic model

requires filtering the resolved large-scale field. So far. it has been

mostly implemented in turbulent flows that are homogeneous in at
least two directions where the filtering can be performed efficiently

(and exactly) in wave space using fast Fourier transforms. In more

complex inhomogeneous flows, this is not possible, and some kind

of discrete filtering has to be applied in physical space. In simu-
lations of such flows, three-point explicit filters have been mostly

used. A number of other spatial filters are available and require
testing.

The main objective of this paper is to examine the performance

of the dynamic SGS model in the context of compressible decay-

ing isotropic turbulence. The model is evaluated by making com-

parisons with results from direct numerical simulations, as well as

with reported "high" Reynolds number, nearly incompressible ex-

perimental data. The simulations are used to assess the capture of

compressibility effects and to investigate issues regarding the im-

plementation of the dynamic model for inhomogeneous flows. The

reason for considering homogeneous turbulence is that the perfor-

mance of the dynamic model can be evaluated separately from the

effects of inhomogeneity.

II. Mathematical Formulation

A. Governing Equations
In LES one computes the motion of the large-scale structures.

while modeling the nonlinear interactions with the small scales.

The governing equations for the large eddies in compressible flows

are obtained after filtering the continuity, momentum, an0 energy

equations and recasting in terms of Favre averages. The filtenng

operation (denoted by an overbar) maintains only the lar__e scales

and can be written in terms of a convolution integral.

f(x_ = fo G(x - x'_ffx) dx'

where f is a turbulent field, G is some spatial filter !usually a sharp

cutoff defined in Fourier space) of width equal to the grid spacing,
,rod D is the flow domain.
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The resulting equations of motion are as follows:

,)_ a
-- + --(_6,) = 0 (2)
3t &r,

h 3 3 ,3

'}_',' (pM,_; , T_ -- , T:

,} ,1

,it _ t,

.,,,here

(')fi, '?_]t 2 aG_ &j) (51&, = -/_,5,, _- ,_ ;}r-'_ + ;).t, 3 J r_

represents the resolved-scale stress tensor The effects of the small

scales are present in these equations through the SGS stress tensor
and the SGS heat flux.

r,, = _5(u_", - _i,fij) I6)

q, = ,3(u,"'_ -fi, f_ 17)

respectively, and.......require modeling. A tilde is used to denote Favre
averages ( f = ,o//_5). Also _ois the density. T is the temperature, u,

is the ,,elocity vector, and k is the thermal conductivity. The specific

heats at constant volume C, and at constant pressure C o are assumed

In this study to be constant. The large-scale molecular viscosity /2

is assumed to obey the power law _/t2,, = (_./_)a:n whereas the

large-scale pressure/5 is obtained from the filtered equation of state
# = _RT. The molecular Prandtl number Pr is assumed to be 0.7.

Note. that in deriving Eqs. [2--4). the viscous, pressure-dilatation
and conducuon terms were approximated in a similar fashion as by
Erlebacher et al. _

where" denotes t_t-filn-red.quantiti_x, _ = (.._,_:_x,)n, _._, is
the width of the test filter in _ ,th direcuom. ( ) denotes some kind
of averaging procedure, and

L,, = _,_,,_,-_l/3_,Y_, _._

ttS_

r... : 3 - 3T

,V, = A'_5 IS I,t--_, A:,,3,Si-_, _t6)

Finally. depending on the choice of contraction used.

and

J S,_: Moin's version

/ ,W,_: Lilly's version

_18)

af

--: Moin's version
B, = 3.r, t I t))

N, : Lilly's version

The model requires the above averaging procedure, an ad hoc
solution] to prevent numerical instabilities due to a simplification

made in the derivation of the expressions tot the model coefficients.

For flows having a direction of homogeneity, spatial averaging is

usually performed along that direction. For the case of homogeneous

turbulence, this results in volume averaging and is the approach

taken in this study. For this type of flow. the model coefficients vary
only with time.

B. Dynamic Modeling of the Subgrid Scales

The SGS terms [Eqs. (6) and (7)] are modeled here using a com-
pressible flow version of the dynamic SGS model of Germano et al. *:
for details, see Refs. 2 and 3. The model involves three coefficients.

C. C_. and Pr,. They are automatically adjusted, as time progresses.
based on the resolved flowtield information with the aid of a second

filter (test filter G) that has a filter width coarser than the grid used

to perform the computations.
A refinement to the Moin et al.'- model has been proposed by

Lilly] The two versions differ only on the type of a contraction used

to determine uniquely the model coefficients, as is described later
in this section. Both versions were tested Jn simulations, and com-

parative results are presented in Sec. III.B. The results presented in

other sections were obtained using the Lilly contraction.

The model parameterization for the SGS stress and the SGS heat

flux is given by

• r_,_ = 2Ct_A:ISt" (9)

_56 A-' ISI ;)7=
q, = .... I I0)

Pr; i}x,

where

L,
: \ :)x,, ,?r---S/'

± = (±x_va:) ÷

The model coefficients are computed from

- r L _ _ . - . ,c :( ,,

Ct = {L_,)/(2_ 2:1S }2 _ 2/x: 51._'_2)

Pr, = C((N,B,)/(-K B:))

11)

I2)

13_

C. Computer Implementation

The numerical method for the direct and large eddy simulations

employed a pseudo-spectral Fourier collocation scheme for spatial

differencing and a third-order Runge-Kutta method for advancing in
time. "_Tile validity of the numerical implementation of the dynamic

model was established by performing a priori tests similar to those

by Moin et al.: and comparing with their reported data.

llI. Results

A. Capturing of Compressibility Effects
The ability of the dynamic model tocapture compressibility ef-

fects was examined by performing LES of decaying isotropic turbu-

lence and comparing with the results obtained from DNS. A number
of simulations were conducted at different initial levels of com-

pressibility and Reynolds numbers. The cases listed in Table I were
considered.

The level of compressibility of the initial fields was controlled

by either varying the initial turbulent Math number M, (cases t-3/.

or the fraction of the turbulent kinetic energy initially contained
in the dilatational velocity field X (cases .1-..6). The effect of the

turbulent Reynolds number Rer on compressibility was examined
in cases 7.8. and 3 and also in cases 4.2. and 9. [Here. M, = q/c.

_( = _q'_/q)". and Rer = pq*/(_), where q is the rms magnitude
of :be fluctuation velocity, c is the mean speed of sound, q" is the

Table I Case parameters

Case Mt X Re-/-

I 02 0 27a2
2 o.a 0 2742
3 06 0 2742
a 0.4 0 2157
5 o.a O.l 2157
6 0.4 02 2157
7 0.6 0 =35
8 06 0 2156
9 0.4" 0 6170



_2 SPYROPOULOSAND 8LA_DELL

L
• 0'15 r /_ - DNS(F1LTERED)

o. t "-4.
, . _, • Case 3

0.05_ P "'"_ • •

O,L/__ Case 1

0 1 2 3 t/'_ 4

Fig. I Time evolutions of rms density fluctuaUonsfor cases1-3; etTects
of initial Mr.

0.2

Prms

0.15

0.I

Rg. 2
of initial X.

0.05

. DNS (FILTERED)

LES

Case 5
Case 4

0 _ 2 3 4 t/.cs

Time evolutions of rms density fluctuations for cases4-6; effects

0.15

gins

0.1

0.05

• DNS (FILTERED)

°o ;
a) t/%

• 0.15

Prms

0.1

0.05

t I

, i i a

1 2 3 4 _,
b) t/x

0.15

0.1

0.05

o
o

c)
1 2 3 4

t/1:

Fig. 3 Time evolutions of rms density fluctuations showing effects of
initial ReT for cases a) 7. b) 8, and c) 3.
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Fig. 4 Time evolutlom of _ density fluctuations showing effects of
inithd Rer for cases a) 4, b) 2, and ¢) 9.

rms magnitude of the dilatational fluctuation velocity, and e is the

dissipation rate of turbulent kinetic energy per unit mass.]
All cases with purely solenoidal initial velocity fields ( X = 0) had

uniform initial density and temperature fields, whereas the density
and temperature fluctuations in the others were obtained from the
isentropic relations and the condition for acoustic equilibrium (see
Sarkar et al.m). The initial three-dimensional energy spectrum for
each case was of the form

ECk) o(/(4 exp [-2(k/k_,) 2] (20)

where thewave number of thepeak of thespectrum k, was setat4.

The LES were computed on (32)] grids,whereas the DNS were

computed on (128)} grids.

Good. and percentwiseconsistent,agreement inallstatisticscon-
sideredwas found between theLES and the DNS forallcases.This

is shown, for example, in Figs. I--4. where the evolutions of the

rms density fluctuations between the LES and the (filtered) DNS

data for the above sets of cases are compared. (The time axes in
these figures have been scaled with the initial eddy turnover time

r, defined as the ratio of the lateral Taylor microscale and the rms

fluctuation velocity in a direction.) Similar findings were obtained

by comparing other statistical quantities, as weft as one- and three-

dimensional spectra, indicating that the dynamic SGS model seems

to be capturing compressibility effects well for is•tropic turbulence.

B. Comparison of Two Model Versions
In the preceding results, Lilly's version 3 of the dynamic model

_as employed. The Moin et ai.-' version was also tested for all

...c_ It predicted higher values for coefficient C. smaller vatues

:,,r _,,crflcient C,. and similar values with Lilly's version for Pr_.
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0.008
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0.015
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0
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¢)

i i
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Fig. 5 Time evolutions of model coefficients showing effects of different
contractions for case 6: a) C, b) CI, and c) PD.

10.2

10 "5 * DNS

-- LES (LILLY'S CONTRACTION)
.... LES (MOIN'S CONTRACTION)

10.6

10° 101 k

Fig. 6m Three-dimensional solenoidal and dilatational energy spectra

for case 6 at tl_" = 4.37; effects of different contraction&

as is shown, for case 6. in Fig. 5. Overall. the Moin et al. model

also performed well but provided higher amounts of dissipation

than Lilly's, as can be seen in the three-dimensional solenoidal and

dilatational energy spectra for the same case shown in Fig. 6. This

is most evident at higher wave numbers. The results are taken at a

time when the turbulent kinetic energy had decayed to one-fourth

of its initial value.

It should be noted that the values of Pr, obtained from either

version of the dynamic model were about 0.4.-0.6 when the initial"

temperature field had a three-dimensional spectrum similar to the

velocity's. In contrast, when the temperature was initially set to

be uniform. Pr, values higher than unity were predicted by the

model. This behavior is believed to be due to differences in the

initial transients of the temperature fields and is another indication

for the need for dynamic modeling.

C. Effects et Vm'ytq tin Twt Rlt_ Wldtll

The only adjustable parameter in the dynamic n'KxIelis the ratio

cz = A/A of the ,.mdths of the test and the grid filter (see Sec. liB).

Based on a pnon and a pt)stenon rests of incompr_ts_ble transitional

and turbulent channel flow. Germano ¢t al) suggested a value of

2 for future use. They also suggested further investigations using

ditTemnt types of Mows. This value has since been adopted by other

researchers and was used in most of the simulations presented here.
The sensitivity of the results on the choice of the filter width

ratio was also examined here for two cases of highly compress-
_ble isotroplc decaying turbulence (cases 6 and 9 from Table I).

Five values of c_ were considered: 1.6, 16/9. 2. 16/7. and 8/3

These correspond to Fourier cutoff wave numbers for the test filter

of I0. 9. 8. 7. and 6, respectively. Note that the use of smaller

or greater = values is undesirable, since it results in test-liltered

quantities that are either almost unaffected by the filtering or contain

only very, large-scale information, respectively, and usually leads to

ill-predicted model coefficients. Results for such cases are not pre-

sented here,

Noticeable differences in the evolutions of the model coefficients

were found when different values for o_ were used in the simula-

tions, as is shown for case 6 in Fig. 7. (The model coefficients were

also calculated a priori from DNS results, and similar differences

were seen.)

Surprisingly enough, the choice of _z seems to have only a very
small effect on the LES results) For instance, the rms density fluc-

tuations for case 6 (shown in Fig. 2 for = = 2) varied by less than

3% for the five values of = considered (the differences are graphi-

cally indistinguishable). This difference was even smaller for case 9.

Best agreement with the DNS was obtained when this parameter was

set to 2.

a)

0.01

C
0,008

0.006

0.004

0.0_

.... LIES (a. 1.S)
--- LES (ct- 16/9)
-- LES (= - 2)

...... LES (-. 1S/7)
LES (¢t ,, 8/3)

1 2 3 V'_ 4

c}

Pr t

0.8

0.6

0.4

0.2

o

o 1 2 3 t./'_ '_

Fig. 7 Time evolutions of model coefficients showing effects of filter
width ratio for case 6: a) C. b) CI, and c) Prr.
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-- LES _/ITN MO01FtCAT1ON
OF CONVECTIVE TERMS)

.... LES (WITHOUT MODIFICATION
OF CONVECTIVE TERMS)

10 6

_00 10_ k

Fig. $ Three_lime_iona| temperature spectra from simui=Uo= of the
Comte-Bellot and Corrsin exper_ent; effects of modlf)dng the comre¢.
tire terms.

D. Modification of the Convective Term_
It should be noted that the convective terms in the filtered momen-

tum and filtered energy equations. EAs. (3) and (4), were modified

to the skew-symmetric form,

__(f,;) -. [ a _ t,; a/ I a,;j

where f ret'ers to _Sfi, and _T, respectively.
"I'hi s modification reduces the effect of aliasing errors, it. t2 which

seems to be a bigger problem in LES than in DNS because the flow-
fields are less well resolved. Shown in Fig. 8 are three-dimensional

temperature spectra from LES of the (high Reynolds number)

Comte-Bellot and Corrsin experiment .3 (see Sea [II.F.2 for a de-

scription of the simulation). The LES without modifying the con-
vective terms had a pile-up at high wave numbers, which led to

instabilities, whereas the simulation with the modified terms was

well behaved.

E. Alternative Formulation for the Energy Equation
In LES. there is also a choice in the formulation of the energy

equation. The most popular approach is the solution of a noncon-
servative formulation (internal energy equation), since it requires

only modeling of the SGS heat flux (see Sec. II.A). In contrast, if a

conservative form (total energy equation) is used instead, then mod-

eling of additional SGS terms is required. An alternative procedure.
which does not require any additional modeling, is to solve for the

pseudo total energy, defined as

= #C, IF + _5g,,_/2 (22)

The resulting equation is

+ _.--_,(_,) = (,r_ju_)-zij (rq)

0 {- ;)7_ a_._(qD (23),3x, _ 3x,) -cu

This _rm is not in strong conservation law form; however, we refer
to it here as the conservative form.

In LES of decaying compressible turbulence (case 6 from

Table l) both formulations performed well. but the nonconserva-
tive form was more accurate. The conservative form was found to

have somewhat of a pileup in the high wave number part of the

density and temperature spectra, as is shown in Fig. 9. This is be-
lieved to be due to aliasing errors originating from evaluating the

temperature from the pseudo total energy.

F. Effects of Employing Different Spatial Test Filters
.-X.swas discussed in Sec. ll.B. the dynamic model requires _test)

filtenng the resolved large-scale field. In flows that are homogeneous
in at [east two directions, the filtering can be performed efficiently

iand exactly) in wave space using fast Fourier transforms. In more

complex inhomogeneous flows, this is not possible, and some kind

of discrete filtering has to be applied in physical space. In the next

two sections, the formulation and testing of such filters is presented.

10 .4 . •

• DNS
-- LES (NONCONSERVATIVE FORM) t,

.... LES (CONSERVATIVE FORM)

_o.S
100 1 01

k

Fig. 9 Three.dimensional temperature spectra for case 6 at t/-r :

2.23: effects of reformulating the energ_ equation.

I. Formulation of SpanaJ Filtem

Many different formulations of spatial filters were examined to

determine their behavior in Fourier space. This was done because we

believe it would be desirable for the spatial filter to have propenies

similar to the sharp cutoff filter.
For uniformly spaced grids, the spatial filters are formulated as

follows:

L-.+L-. L-.÷i,..L÷ (2-1.')
_z,, 2 = Z.-' a" 2

n=t n=0

where fj is the function value at node ) and fj is the corresponding

filtered function value. N, is the number of implicit coefficients.

which are given by {=, 1,and N, is the number of explicit coefficients,
which are {a, }.

The Fourier transform of the filtered function is given by _ =

dj..p., where .F is the Fourier transform of the function and dj is
the filter transfer function. For the filter formulation (24/. the filter

transfer function is

I Nr
dj_ = a,,cos _ I ..LN )]/

(25)

where k is the wavenumber and N is the number of grid points.

The first filters to be considered are approximations to the top-hat

filter in physical space. The top-hat filter is defined by

{lo if x-;X/2<x'<x+_x/2
G(x - x') = (26)

otherwise

where the filter width _x is assumed here equal to 2Ax (as was

suggested itl See. III.C). The convolution integral in Eq. (t) can

be approximated in various ways. Using three collocation points

and the trapezoid rule gives an = 1/2 and a_ = 1/2. With three

collocation points one can improve the accuracy of the integration

by using Simpson's rule, which gives ao = 2/3 and a_ = 1/3 If the

integration is done analytically, then a spectrally accurate formuta
is obtained.

The filter transfer functions for these schemes are shown in

Fig. 10a against that of the sharp cutoff filter. The top-hat filter

behaves very differendy from the sharp cutoff filter and is more like
the Gaussian filter in that some of the low wave number modes are

reduced in amplitude whereas some of the high wave number modes
are retained.

A second set of filters is obtained by approximating the sharp

cutoff filter in a least squares sense, with certain constraints imposed.
Three constraints are considered. Constraint I is that the filter be

mean preservering. This is important because the filter is supposed to

separate large and small scales and should not alter a uniform field.
For the filter to be mean preserving..it is necessary that 9_(0) = I.

Constraint 2 is that the end point of the filter transfer function is fixed

to be zero; i.e.. _(k = N/2) = 0. This constraint is not reqmred

on any physical basis; however, we believe it is a desirabie property
of the filter transfer function. Constraint 3 is that the rat_o of the
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filter width to the grid spacing, &/Ax. be 2. since this is the chosen

standard value.

To implement constraint 3, one has to define the filter width for

a given filter. We have chosen to define the filter width in a manner
analogous to how the integral length scale is defined for a two-point
correlation. For a discrete filter this corresponds to

= ,--:- &x (27)

1=1 GI

Since the fillers are mean preserving

N

Z _/ =_°---- l (28)

and

_---_ = G-'7 _ _* (29)
= -,V/2 + t

This definition is dependent on the number of grid points N, which
is undesirable. A more useful formulation can be obtained by letting
k' = 2k/N, Ak' = 2&k/N (where &k = [) and _'(k') = _(k).
where _(k) is given by Eq. (25), so that

, = o05
= -,V/2 + I

Taking the limit N----e_ and using the symmetry of G' results m

;t 1 _'(k') dk' (31)
Ax

This definition is consistent with the length scale obtained from the

cutoff wave number when a sharp cutoff filter is used, which is the

reason it was chosen. An alternate definition in terms of the second

moment of the filter function was used by Leonard t4 for the top-hat

filter and the Gaussian filter; however, for the sharp cutoff filter such

a definition gives an infinite filter width, and for some of the other
filters considered in this study, an imaginary filter width is obtained.

Therefore, the definition given in Eq. (31) was adopted.

The least squares problem is formulated as minimizing the inte-

grated square difference between the filter transfer function G'(k'5

and the transfer function for the sharp cutoff filter _C=o(k'). The free

parameters are the filter coefficients {a. ] and {_x=}. From constraint
1 we have

/ Ea"/ 1+ E=. =I (32'
L_=o / _=l

Constraint 2 give_

,V,- I

G'(k' = 15= 0 = Za.
n ell

(33)

These two equations can be solved for mv,-_ and a,v,-z in terms

of the other parameters, so that the numbers of degrees of freedom

is reduced by two. Constraint 3 was enforced by using a penalty
function. The function to be minimized is

I ('):E = [_'(k') - _o(k')] 2 dk' + A _x - 2
(3,.*)

The Nelder-Mead simplex search algorithm t_ was implemented to

solve the minimization problem. The integrals needed to evaluate E

were calculated using Romberg integration with the error tolerance
set to I0 -_. The constant A was set to I0 t° so that constraint 3

was met with an error on the order of t0 -6. For explicit filters.

the integrals can be evaluated analytically, and the minimization

problem can be solved exactly. This was used as a check of _he

numerical procedure. For this case. Eq. (31) reduces to

;x/_,x = l/a_) (:35)
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Table 2 Summary ot spat_,l filte_ t_led i-, om.l_,

Filter ao a I a2 "3 _l at]

I 3-pt explictt, t_apezoid 0.5 0.5
2 3-pt explicit. Simpson 06666667 0 3333333
3 5-pt explicit, least squares 0.4726761 0 5819719 -0 05464480
,t 7-pt explicit, least squan_s 05 0 6744132 0
5 5-pt implictt-7.pt explicit, least squares 05 .0 8105146 0.4830535
6 5-pt implicit-7-pl explicit, l.,ele 0 5 0 75 0.3
7 5-or implicit-7-pt explicit, compromi._ 05 0.8056734 0.4684092
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Fig. 11 Time evolutions of rms density fluctuation= for case 6; effects
of spatial filters: a) explicit and b) implicit.

The resulting filter coefficients are given in Table 2. The three-

point explicit filter is the same as the trapezoid filter. No five-point
explicit filter was found that met all of the constraints, and so con-

straints 2 and 3 were dropped for the five-point explicit filter shown.
The highest order explicit filter considered is a seven-point filter. A
number of implicit filters were found. The one discussed here is a

five-point implicit-seven-point explicit filter.

The least squares filters are compared to the sharp cutoff filter

in Fig. 10b. As the number of filter coefficients is increased, bet-

ter agreement with the sharp cutoff filter is obtained, as expected.

However, the filter transfer functions are oscillatory and display

large amplitude overshoots, which is believed to be undesirable.

A third set of filters is obtained following Lele z6 in which a dif-

ferent set of constraints are placed on the filter transfer function.

To compare these filters to the sharp cutoff filter with _/Ax = 2,

the extra constraint _(k = N/4) -- I/2 was imposed. The filters

obtained are shown in Fig. 10c. In general, the filters are smooth.

monotonically decreasing from l to 0. However. the filters are not

as sharp as the five-point implicit method obtained from the least

squares approach. Note that the three-point explicit filter is the same

as the trapezoid filter.

The filters obtained from Lele's formulation are very smooth.

whereas the filters found from the least squares approach are much

sharper but exhibit oscillations. In an attempt to reach a compromise

between the two filters, we constructed filters obtained by combining

the fiher coefficients in the following way:

a,, = _.,a_' ÷ (1 - _)a_ _, m, = *_ + (t - ,p)c_ _¢ (36)

Figure 10d shows the transfer function for the five-point implicit-

seven-point explicit filter with _ =0S2. This compromise filter

E(k) O_
10.3

-- LES (SHARP CUT-OFF) "%X_.

...... LES iFILTER 5)" "%-_.-\T
10-4 ......... LES (FILTER6)

..... LES (FILTER 7) _' ",

I0° I01
b) k

Fig. 12 Three-dimensional enerll _ spectra for case 6 at t/_" = 4.37;
eflrects of spatial filters: a) explidt and b) implicit.

gives a transfer function that is sharper than that from the Lete

formulation but does not have as large an overshoot as that from the

least squares approach.

2. Testing o[ Spanal Filters

A number of spatial filters from the preceding section were tested
in simulations. The filters considered are shown in Table 2 (see also
Fig. 10). Homogeneous flow test cases were chosen, so that the
effects of these filters can be compared to that of the sharp cutoff
filter, defined in wave space, as well as against available DNS or

experimental data.

Results from simulations of a highly compressible decaying

isotropic flow (case 6 from Table 1) are presented first. The histories

of the rms density fluctuations ate compared in Fig. 11. Figure 12

shows comparisons of three-dimensional energy spectra taken at a

time when the turbulent kinetic energy had decayed to one-fourth
of its initial value. The results from a DNS are also included in

these figures for further comparison. The evolutions of the model

coefficient C are shown in Fig. 13. All spatial filters are found to be

more dissipative at higher modes than the sharp cutoff• All implicit

filters performed wetl and. among them, filter 7 was found to be

the best candidate. Most of the explicit filters were very dissipa-

tive and performed poorly, with the exception of filter 4 which gave

results very similar to those from the sharp cutoff filter. However.
this filter predicted small negative values for the coefficient C_ and.

consequently, from Eq. (9). negative values for the subgrid-scale tur-

bulent kinetic energy r,. This may, in some cases, lead to numerical

instabilities, although it did not here.

The spatial filters were also tested for the case of a nearly incom-

p_ressibte ;urbulence. The isotropic grid-generated (high Revnoids
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number) turbulence experiment of Comte-Bellot and Corrsin I] was

simulated as a temporal decay on a (32) ] grid. The initial veloc-

ity fields for the simulations were purely solenoidal and designed
to have the same three-dimensional spectrum as that reported at

rU./M = a.2 in the experiment (where Un is the mean flow velocity

and M is the grid size). The initial pressure fields were computed

from the incompressible Poisson equation, while the density was
assumed to be uniform. The initial Mach number was set to 0.3.

a)

C
0.05

0.04 ..'

0.03 .,/
.(t ,,

0.02 .?// ._

_/. .....O.Ol
--- LES(RLTER 1) --- LES (FILTER 3'

0' T -;.. LES/FILTER, 2) , ---- L.IES(FILTER 4)L
40 60 . 80 100 120 140 160 180

tt /M

0.025

C
0.02

0.015

0.01

0.00

%
b)

_/// -- LES (SHARP CUT-OFF_
--- LES (FILTER 5)
..... LES (FILTER 6)
--- LES (FILTER 7)

so do 16o
tUo/M

180

Fig. 16 Time evolution of model coefficient C from simulat/ons of
Comte-Bellot and Corrsin's experiment; effec_ of spathtl filters: a) ex-
plicit and b) impfldt.

The sharp cutoff filter was employed first in the dynamic model.

The predicted time development of the turbulent kinetic energy and

the three-dimensional energy spectra compare well with the avail-

able experimental data. as shown in Figs. 14 and 15, respectively.

The performance of the spatial filters was then examined.

Figures 14 and 15 also present results from these simulations. The
evolution of the model coefficient C predicted from the various spa-

tial filters are compared against theone from the sharp cutoff filter in

Fig. I6. Filter 6 was found to be the most dissipative of the implicit



filters.However, all of these filters performed well and similarly to
the sharp cutoff filter. F_ter 4; the seven-poim explicit filter, again
Performed very welk in conem_ to the three-point and five-point

explicit filters, which provided gn=t .amoun_ of dLssipation.
For the Comte-l_ellot and C'm'r_n simulation, we neglected CI on

the basis that for nearly-incompressible flows r_ is small compared
to (he thermodynamic pressure). _7,is This was done to avoid insta-
bilities in the computations that occurred during the imtial transient

period for some of the spatial filters. However, negligible difference

on the results was observed when the sharp cutoff filter was used
and C/ was computed from the dynamic model.

IV. Conclusiom

Several issues involving the use of the dynamic SGS model in per-
forming LES of compressible turbulent flows have been examined
by employing the model in simulation,= and comparing with re.suits
from DNS or experiments. Decaying isotropic turbulence was con-
sidered in order to evaluate the performance of the model separately
from the effects 3f inhomogeneity.

We conducted a paramc_c study where the levels of compress-
ibility of the initial flow fields were varied. Tim model, with its
ability to adjust itself to the flow conditions, was found to predict
well, from a statistical viewpoint, the bulk of the flow. The dynamic
model was able to capture compressibility effects well and does not
require any explicit compressibility corrections.

[n Performing LES of inhomogeneous compressible turbulent

flows using the dynamic model, the filtering operation required by
the model can not be done in wave space but, rather, has to be ap-
proximated in physical space. We have examined the behavior of
several implicit and explicit spatial filters in wave space. We also

conducted simulations of highly compressible and high Reynolds
number nearly incompressible cases of decaying isotropic turbu-

lence to study the Performance of such filters against that of the
sharp cutoff filter defined conveniently ia Fourier space. The five-

point implicit-seven-point explicit filters examined performed ex-
tremely well and should be considered as good candidates for future

use. However these filters would be more expensive to employ than

explicit ones. The former filters have transfer functions that are

much sharper than the other filters near the cutoff mode, but exhibit
oscillation= that as suggested by the simulations are not of seri-

ous concern. The seven-point explicit filter gave good results also;
however, it predicted small negative values for model coefficient

Cs, which is undesirable. The three-point and five-point explicit fil-

ters were very dissipativefespecifiily in the high Reynotds number
simulation.

Two version=ofthe dyn_u_ model we_ empl_/ed_d tested in.

• _ The version" byy.a'Hy_r-wa,_ _ _.,rnmfe a than the-
vers_{ l by Moia, el.ld. = " -'= ".--i_--_'..,_-_

A number of simulati0m were aho I_rfmmd,_ study the effect

of the filter width rat/o--_ 0111yadjusta_bE: _ in the dy-
namic model. The re.mRttsugge._ a"grezi-i_ty of the model

to this parameter. Best _p, eemcnt."with theresults from DNS was
obtained when this _-was set to2.

Modification of _'ve terms in the filtered momen-

tum and filtered enerig6equatiom improves the accuracy of the
simulations, as well as thz stability of the rmmefical method. In

addition, the nonconsc_ve formulation, of the energy equation
was found tobe somewhat beR= than the conservative form.
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Abstract

The effect on aliasing errors of the formulation of nonlinear terms, such as the convective terms in the

Navier-Stokes equations of fluid dynamics, is examined. A Fourier analysis shows that the skew-symmetric

form of the convective term results in a reduced amplitude of the aliasing errors relative to the conservative and

nonconservative forms. The three formulations of the convective term are tested for Burgers' equation and in

large-eddy simulations of decaying compressible isotropic turbulence. The results for Burgers' equation show

that. while in certain cases the nonconservative form has the lowest error, the skew-symmetric form is the most

robust. For the turbulence simulations, the skew-symmetric form gives the most accurate results, consistent with

the error analysis.

1. Introduction

Numerical simulation of nonlinear conservation laws, such as the Navier-Stokes equations of fluid

dynamics, can give rise to nonlinear instabilities. This was pointed out long ago by Philips [14]. The

instability was attributed to aliasing errors, in which the product of low order modes creates high fre-

quency modes that when discretized appear as low frequency modes. This difficulty was overcome by

Arakawa [21 for two-dimensional, incompressible problems using the vorticity-streamfunction formu-

lation by developing a finite differencing scheme which satisfies certain global conservation properties.

The modifications ensure conservation of kinetic energy and squared vorticity in the absence of ex-

ternal and viscous forces and time differencing errors. It was found that by meeting these constraints

the instability was suppressed.

This idea was extended to three dimensional simulations by Kwak [11], who used primitive variables

and rewrote the convective term in the momentum equation.

Ou: I. 1)
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in the modified form

I i_ 1 /3u_ (I.2)

where use has been made of the conservation of mass equation for incompressible flow, OIL I/O27 )

0. The formulations in (1.1) and (1.2) are referred to as the nonconservative and skew-symmetric

formulations respectively. A third formulation is the conservative form,

a

azj (u,u;). (1.3)

Using the skew-symmetric formulation in (1.2), Kwak showed that the integral conservation properties

are maintained by the finite differencing scheme. Mansour, Moin, Reynolds and Ferziger [121 showed

that the identity equating (1.1) and (1.2) does not hold numerically and that this is the reason the the

global conservation properties are not satisfied. One can show that the reason (1.1) is not equivalent
to (1.2) numerically is the occurrence of aliasing errors. The skew-symmetric form of the convective

terms were extended to the simulation of compressible flows in [4,8,15].

In [12] the rotational form of the convective term was considered. It is given by

u: az_ azj -_ _uiuj ,

and is widely used in incompressible simulations. The rotational form ensures additional conservation

properties including that of helicity [10]. Horiuti [ I 0] performed numerical experiments of incompress-
ible turbulent channel flow using a finite differencing scheme with the skew-symmetric form and the
rotational form, and concluded that the skew-symmetric form was superior. Horiuti attributed the poor

performance of the rotational form to large truncation errors in the vicinity of the wall. Zang [16] per-

Formed spectral calculations of incompressible turbulent channel flow using the she;v-symmetric form
and the rotational form of the convective terms. He was also able to perform dealiased simulations in

which aliasing errors were removed, and he showed that the poor performance of the rotational form

was due to aliasing errors.

Zang states that no theoretical analysis is available to explain why aliasing errors are reduced for
the skew-symmetric form. In the current paper we examine the aliasing errors created by the nonlinear

convective term and show, through a Fourier analysis, that the magnitude of the aliasing errors is

reduced for the skew-symmetric form compared to conservative and nonconser_'ative forms. The

analysis method for the rotational form becomes too complicated to draw any conclusions regarding
it; however, the low aliasing errors for the skew-symmetric form can be understood. We then test

the three formulations on Burgers' equation and in large-eddy simulations of compressible isotropic

turbulence.

There are other methods of reducing aliasing errors besides reformulating the convective terms.

Orszag [13] pointed out that aliasing errors for a product can be eliminated by truncating the Fourier
coefficients of the velocity and the product using the so-called "2/3 rule." For some problems, such

as simulation of compressible turbulence, which are best time advanced in physical space rather

than in Fourier space, this procedure requires additional Fourier transforms and can be prohibitively

expensive. An alternative which does not use Fourier transforms is due to Anderson [1]. With _his

procedure the velocity and the product are filtered in physical space using a digital filter. Aliasing
errors are eliminated by forming the product on a refined grid. This procedure can also be expensive
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if high accuracy ts required. Canuto et al. [5] point out that aliasing errors cease to be an issue if

adequate resolution is used. However, for problems such as large-eddy simulation of high Reyno ds
number turbulence, in which the flow field is not well resolved, aliasing errors are important and

increased resolution is not a possible solution. Therefore, the reformulation of the convective terms

discussed in the current paper otters an alternative to more expensive dealiasing procedures.

2. Error analysis

We are interested in examining the aliasing errors that arise in using pseudospectral Fourier methods

to solve nonlinear partial differential equations. The specific problem we are concerned with is the

solution of the compressible Navier-Stokes equations, and so we take the nonlinear convective terms as

the form of interest. In order to analyze the aliasing errors, we consider a model problem of evaluating

a derivative of the form

O:r (f9)" (2.1)

The convective terms in the momentum and energy equations (and in a passive scalar or chemical

species equation) can be put in this form.

Consider the product f9. Using a spectral Fourier method, the functions f and g are represented by
a finite set of Fourier modes evaluated at iV discrete collocation points as follows

.V/2

:,= Z
rz=-N/2+l

:',,. _

Z _-- _ik,_zt (2.3)
rn= -.V, 2 ÷ l

where z; = (g- 1)L/N, (j = I .... , N), are the collocation points, k_ = 2rrn/'L are the wavenumbers.

L is the length of the computational domain, and f,_ and g'm are the Fourier coefficients. The continuous

functions f(x) and 9(x) are approximated by a finite set of Fourier modes,

.V/2

n=-N/2+ I

.",'/2

g( .el = _ ']me ik''_. (2.5')
m=-;V: 2+1

The product is

f(.c)9(z) =

.;"2 .\"2

_=-,Vt2-.-t m=-.V 2-1

2.61
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Fig. I. Aliased wavenumber versus true wavenumber.

When this product is discretized, some modes will have values of (k,_ + k,_) which lie outside the

range of resolved wavenumbers, which is given by

-T T-l "'T T

for N even. On the discrete collocation points these modes will be identical to modes that lie within

the range of resolved wavenumbers. Thus the unresolved, high wavenumber modes are "'atiased" to

resolved, lower wavenumber modes. (See [5] for a more complete description.) A Fourier mode which

has a wavenumber outside the resolved wavenumber range is aliased to the mode within the resolved

wavenumber range which has a wavenumber that differs from (k_ + kin) by an integer multiple of

2_N/'L. We will denote the wavenumber of the resolved mode to which the mode (k,_ +k_) is aliased

bv ('k,_ + k,.n) °. A graph of (k,_ + k,.n) ° as a function of (k,_ + k_) is shown in Fig. I. Note that if

{'k_ + k_) lies within the range of resolved wavenumbers then the mode is not aliased to a lower

frequency mode and (k,_ + k,_) ° = (k,_ + k,_).

The discrete derivative is found by transforming the discrete product values, multiplying the Fourier

coefficients by i = v/_T times the wavenumber, and inverting the transform. This procedure gives

,V / 2 .V ,' 2

I : z(fg) =
"17 7t----- X',, 2-1 _-----.\/2+1

i(k,, + ,.,_j lr_'.lm_
--'1 "w(_.,')

For modes that contribute to the aliasing error the Fourier coefficients are multiplied by the wavenumber
of the resolved mode rather than the actual wavenumber.
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[t will be shov,'n that the skew-symmetric form of the nonlinear term gives a reduced amplitude of

the above aliasing error. Consider rewriting the derivative of the product as

, (. °,)c_(fj)_(l-c_) -_--_zg + f _ .
2.8)

Upon substituting the Fourier representation for f(.r) and (](a:) and discretizing, this becomes

V," N/2

Z Z
r_----_\__ I rn.=--.V/'2-.-I

i[cl(/,:_ +/,:_)'> +(I - ct) (,t:,, 4--kin)] ._,ff_e i(*':''+'v'')'>=' t2.9)

where the fact that/_o = k for the resolved wavenumbers has been used. Since, for modes that create

aliasing errors, (kn + k_) ° # (k,_ + k=), the value of the derivative depends on the parameter c_.

When evaluated analytically, (2.8) is of course equivalent to (2.1) and independent of c_. However. the

product rule for differentiation used to obtain this form does not hold numerically.

Let k" = Ia(kn +k_)°+ (I- a)(k,_ +km)] be an effective wavenumber that multiplies the
Fourier coefficients when a derivative is taken. For Fourier modes with (_:,., + k=) within the range

of resolved wavenumbers, there is no aliasing error, whereas tbr modes that create aliasing errors, k"

will affect the magnitude of the aliasing errors. Therefore, it may be possible to set the parameter a

to reduce the aliasing error.
With a = I we recover the original conservative form of the nonlinear term, while with a = 1,2

we have the skew-symmetric form, and with a = 0 we have the nonconser_'ative form. A plot

of k" as a function of (k_ + k,_) tbr the three values of a is shown in Fig. 2. (Only the range of

(k,_ '-:- k_) that gives rise to aliasing errors is considered.) As seen in Fig. 2, the skew-symmetric

form gives values of k" that are small for modes with (k,_ + kin) close to the range of resolved
wavenumbers. Modes in this range come from a product of modes with intermediate wavenumbers

or the product of a mode with a low wavenumber and a mode with a high wavenumber. The value

of k" for the skew-symmetric form is larger for higher values of (/On + k,,_), and these modes come

from products of two high wavenumber modes. For problems of physical interest, the solutions have
Fourier coefficients that decay at high wavenumbers, and aliasing errors coming from the modes

close to the resolved wavenumber range generally have higher amplitude than aliasing errors coming

from higher wavenumber modes. Therefore, it is more important to suppress the aliasing errors coming

from the region close to the resolved wavenumber range. Since the skew-symmetric form has a smaller

amplitude tbr the aliasing errors coming from these modes than the other formulations, it is expected

to perform better.
To determine if the reduction in aliasing errors is realized in practice we consider two problems.

The first is the one-dimensional viscous Burgers' equation, and the second is a large-eddy simulation

of compressible isotropic turbulence.

Although here we are considering the convective term, other nonlinear terms, such as diffusion
terms with nonuniform transport coefficients, can be written in the _,kew-symmetric form. We believe

aNasing errors would be reduced for these terms as well.
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3. Burgers' equation model problem

As a model problem we consider the one-dimensional viscous Burgers' equation,

u¢. + _1/,z ----u'tt.zz, (•3.1

where a subscript denotes partial differentiation. Benton and Platzman [3] give several exact solutions

and we choose their case (5.2) in which the bounda_ conditions are periodic and the initial conditions

are given by u(z,0) = -Rsin(z).

Burgers' equation was solved numerically using a Fourier pseudospectra[ method with a 5th order

accurate Runge-Kutta-Fehlberg time advancement scheme [9]. The nonlinear convective term was

formulated using the following three forms

[ ,

I {3.3)t Iu'-)._ -:- _u:_,

which are the conservative, skew-symmetric and nonconservative forms respectively. The specific case

we examine has R = -20 and was integrated to g = 0.075• The time step was _t = ().000t and

the time differencing errors were checked to ensure that they were negligible compared to the spatial

differencing errors. The calculations were done on a Cray YMP for which the word length is 6" bits

in an effort to keep round off error low.
The numerical solutions for +V = 32 are compared to the exact solution in Fig. 3. and the maximum

and r.m.s, errors are ,.z,iven in Table I.At first the results are somewhat surprising because, while the
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Fig. 3, Solution to Burgers' equation at t = 0.075 (,V = 32). Exact solution. --. conservative form, • ..... , skew-symmetric
form. - • -. nonconservative form. ----

Table 1

Maximum and r.m.s, errors in the numerical solution to Burgers' equation

N = 32 N = 33

Formulation o max r.m.s, max r.m.s.

Conservative 1 l. 11 0.127 1. i0 0,056

Skew-symmetric I/2 0.59 0.056 0.33 0.018

Nonconservative 0 0.46 0.026 3, 14 0.202

skew-symmetric form performs better than the conservative form, it does worse than the nonconser-

vative form. However, we found that if the calculations are done using N = 33 grid points, the results

(given in Table 1) show the skew-symmetric form performs the best and the nonconservative form

does the worst, by a large margin. This behavior seems perplexing; however, a detailed investigation

gives some insight into the differences in the formulations.

The convective term was examined in detail to see the differences in the formulations. The exact

solution u(z. t) was calculated at t = 0.075 at the N collocation points, and then the convective term

was tbrmed using the three formulations. The magnitudes of the Fourier coefficients are shown in

Figs. 4 and 5 for .V = 32 and .V = 33 respectively. Also shown are the Fourier coefficients for the

exact convective term fthe Fourier coefficients were obtained by transforming the exact convective

term on .V = 256 collocation points) and a dealiased convective term, which is described below.

From Fig. 4 one finds that for .V = 32 the Fourier coefficients from the nonconservative formulation

lie the closest to those from the exact solution, while for .V = 33 the Fourier coefficients from the

skew-symmetric form are the closest. (Because of the symmetry, of the problem, the phase of the

Fourier coefficients is =_/2. and all of the numerical solutions have the same phase of the Fourier
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Fig. 5. Magnitude of the Founer coefficients of the convective term formed using the exact solution at t = 0.075 on ,V = 33

,grid points. Conservative form. ,, skew-symmetric form. #. nonconservative form. o, dealiased. --. exact. - - - -

coefficients as the exact solution. Therefore. examination of the magnitude of the Fourier coefficients

of the convective term gives a proper comparison.)
For .V = 32 the magnitude of the Fourier coefficients for the conservative formulation are larger

than those of the skew-symmetric form and those for the nonconservative formulation are smaller.

while for Y = 33 these relative positions are switched. The switching of the relative magnitude of the

Fourier coefficients in the numerical solutions for N = 32 and N = 33 is due to the phase relationships

among the Fourier coefficients of the solution. To see this, consider the factor ik'f_'_m in 12.9/. The

phase of the Fourter coefficients of the exact solution are _'/2 for even positive or odd negative mode
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numbers, and--.,, ''__for odd positive or evenne=ative_ mode numbers. So/_, =iso_nt_ n)(.-tt", ,_,_-t?iFor

the modes that create aliasing errors, the factor can be written

i[o(kn+km) '>+(I-a)(k,_ +km)]_isun(n)(-l)n]fn'r]iisgn(ml( - ) 1.7,,_I[

i [c<(,t:._- k,.,,;° + ( 1 a)(k,_ + ,4:,.,)]l f,, I '- ' )"-'"+ _= , -- . !(.]ml(-- l (3.5)

(Since the sign of n and rn will be the same for modes contributing to the aliasing error.

sgn(n)sgn(rn) = [.) If the product of modes n and rn are aliased to mode l, then l = n _ m+ sgn(l).V.
The Fourier coefficients of the exact convective term have phases that are ±_1'2 with the sign opposite

that of the coefficients for the solution (with the exception of the ! = = l modes). Pulling out a factor

to account for the phase we have

[i sgn(l)(-l)('-I)]sgn(/){c:_(k,, + k,,) ° + (1 -,-_)(_t:,_ + X.,,,)] If,, I ry,,,it- I ) -<_m#)'v. 13.6",

Therefore. the aliasing error will be multiplied by (- I ) depending on whether the number of collocation

points, N. is even or odd. The error is either added or subtracted depending on the the parity of ?v"

and the sign of k', which is opposite for (_ = 0 and _ = I.

As an example, consider l = 15. With :V = 32 the Fourier modes that contribute to the aliasing

error are (n, m) = {(-15,-2), (-14,-3) .... , (-2,-15)}. The factor in equation (3.6), without the

phase term, is

[(_(15) + (l -(_)(-17)]lLIl_,,l(-l) -3z = [3,_<_- 17]lLIIyml. (3.7)

For a 1, I f'_ 0 the factor in the brackets is 15, -I and -17, which corresponds very well to

the relative magnitudes of the differences between the Fourier coefficients of the numerical solutions

and the dealiased result for mode 15 in Fig. 4. With N = 33 the Fourier modes that contribute to

the aliasing error are (n, m) = {(-16, -2), (-15. -3),..., (-2, - 16)}. The factor in equation (3.6"),

without the phase term, is

C<-,(is)+ (l - c<)(-18)] lf,,tl_,,l(-l) -33 = [is - 3._] If_!l,5,nl. __.s;)

For a = 1. 1t-. 0 the factor in the brackets is -15. 1.5 and 18. which a<,ain correspond very well
to the results for mode 15 in Fig. 5. Therefore. we can understand the large shift in the error in the

convective term observed when N is changed.

To see the aliasing errors produced by the three formulations they are compared to a dealiased result

in which the atiasing errors have been eliminated. Forming the product utz_ creates Fourier modes

with mode numbers -:V,. .... V, which would require 2,V collocation points to represent. A dealiased

convective term is formed by starting with u on .V collocation points, transforming to wave space.

padding the Fourier coefficients with zeros so that at least 2N Fourier coefficients are used (we used

256 modes, although this is unnecessary.), forming the Fourier transform of ,z_, transforming u and a:

back to physical space on the larger number of collocation points, forming the product, transforming to

wave space, and keeping only the .'V Fourier coefficients. This is the method that _,_as used to compute
the curve labeled "dealiased convective term" in Figs. 4 and 5. One sees that the skew-symmetric form

is ,,'e_ close to the dealiased form, as one would expect from the analysis in Section 2. Therefore.

the skew-symmetric form of the convective term gives a viable alternative to dealiasing. Note that

dealiasing is very expensive for the compressible Navier-Stokes equations because of the extra Fourier

transforms needed. Although dealiasing is used for incompressible turbulence simulations, it is not

practical for the compressible equations.
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Ho,,vever. as is clear in Figs. 4 and 5, the dealiased convective term is not the _ame as the exact

conxective term. This is because the exact solution cannot be represented by a finite number of Fourier

modes, and so the Fourier coefficients computed using .V = 32 or .V = 33 collocation points are not

the exact Fourier coefficients. The difference is due to truncation error. Just as with the aliasing

errors, the value of the truncation error is determined by the phase relationships of the exact Fourier
coefficients of the solution. Because of the symmetry of the solution, the parity of :\" can make a

large difference in the truncation error, as is clear in the difference between the dealiased solutions in

Figs. 4 and 5. With this understanding one can see that the low value of the error in the convective

term t'or the nonconservative formulation with N = 32 is due to aliasing errors partially canceling

truncation errors, whereas with X = 33 aliasing errors add with the truncation errors to produce a

very large error.

From the above analysis we see that the low error for the nonconservative formulation on ,V = 32

grid points is fortuitous and is due to the particular symmetry, properties of the solution. Although the

skew-symmetric form of the convective term does not give the least error in all cases, it is the most

robust. For problems, such as the simulation of turbulence, where the solution has a more random

dismbution of phases of the Fourier coefficients than for the solution of Burgers' equation, the skew-

symmetric form is expected to perform better than the other formulations. In the next section we
examine the behavior of the various formulations applied to large-eddy simulation of turbulence. The

above example also points out the danger of drawing conclusions about numerical methods based on

simple problems, although such problems are useful in understanding how a numerical method works.

4. Large-eddy simulation

The problem we are interested in is the simulation of turbulent flows, specifically compressible

homogeneous turbulence. One approach is direct numerical simulation (DNS), in which the time

dependent Navier-Stokes equations are solved without any kind of turbulence model. However. because

of the wide range of length scales that occur in turbulence, DNS is limited by current computer

capability to low Reynolds numbers. A means of simulating flows at higher Reynolds numbers is to

perform large-eddy simulations (LES), in which the motion of the large eddies are resolved, while the
effects of eddies smaller than the grid spacing are modeled. Aliasing errors occur in both DNS and

LES; however, since large-eddy simulations are by definition not well resolved, aliasing errors are a

more important issue with LES than with DNS.

The large-eddy simulations used are discussed in detail in [15], so only a brief overview will be

given here. The simulations are of decaying isotropic compressible turbulence. The computer program
uses a Fourier pseudospectral collocation method with a compact storage third order Runge-Kutta

time advancement scheme. The computations were performed on a Cray C90.
The convective terms in the momentum and internal energy equation were written in the general

form

c_ _-777r:(f_oj)÷(1 -a) f, Og:c3:L, c_:r: g: '

where in the momentum equation f, = P;_ and !h = _:, while in the energ.v equation f: = ;?C. 7

and .q: = :zj. (Note that the internal energy equation is solved in [..,ES of compressible turbulence.
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Fig. 6. Decomposed velocity spectra from LES of compressible isotropic turbulence. Solenoidal spectra. E,(k). dilatational
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Fig. 7. Tempera[ure spectra from LES of compressible isotropic turbulence. Conservative form. - - - -
form, --, nonconservative form, - • -. DNS data. o.

, skew-symmetric

rather than the total energy equation, because of the difficulty in modeling additional terms that arise

with the use of the total energy. See [7] and [15] for a discussion.) Setting _ = 1, t/"_,_ or 0 gives the

conservative, skew-symmetric, and nonconservative formulations respectively.

The conditions used are those of case (6) in [15] for which the initial turbulent Mach number is 0._,

and the grid has 323 points. In order to see the differences in the effect of the formulations, we exarmned

the three-dimensional power spectral density of the velocity field, decomposed into solenoidal and

dilatational parts, and the temperature field, E_(k), Ea(k) and ET(k) respectively. The velocity spectra

are shown in Fig. 6 and the temperature spectra are shown in Fig. 7, at a time when the turbulence

has decayed for two initial eddy turnover times. Also shown for comparison are the results from a

DNS using 1283 grid points. The results for the conservative formulation and the nonconservative

formulation show an unphysical pile-up in the spectra at high wavenumber L'. This behavior is due to

aliasing errors. The skew-symmetric formulation results, on the other hand. show very little pile-up
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in the spectrum. As an additional test, simulations were also done on a higher Reynolds number case,

which corresponds to the experiment of Compte-Bellot and Con'sin [6]. The conservative tbrm and the
nonconservative form resulted in numerical instabilities that halted the simulations, while the skew-

symmetric form resulted in a simulation that was completed and compared well with the experimental

data. These results show that the skew-symmetric formulation of the convective terms reduces aliasing

errors and produces a more accurate solution than the conservative and nonconservative formulations.

5. Conclusion

The effect of the formulation of the nonlinear convective term on aliasing errors has been exam-

ined. A Fourier analysis using an effective wavenumber shows that the skew-symmetric form of the

convective term results in a reduced amplitude of the aliasing errors compared to the conservative
and nonconservative forms. The three formulations of the convective term were tested tbr Burgers"

equation. It was found that in some cases the nonconservative form gives the lowest total error rather

than the skew-symmetric form. However, a detailed Fourier analysis of the convective term shows that
the behavior of the formulations is dependent on the phase relationships of the Fourier coefficients of

the solution, and that the skew-symmetric form gives the most robust results of the three. The three

formulations were tested in the large-eddy simulation of decaying compressible isotropic turbulence.

and it was found that the skew-symmetric form gives the most accurate results, consistent with the

error analysis.
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Introduction

In the past few years, there has been a resurgence of interest in performing large-eddy

simulations (LES) of flows of engineering interest. There are two roles for LES to play in

the computation of complex turbulent flows. First. LES can be used to study the physics of

turbulence at higher Reynolds numbers than can currently be achieved with direct numerical

simulation (DNS) and LES can aid in the testing and improvement of lower order engineering

turbulence models. Second, it is hoped that LES can be used in the near future as an

engineering tool rather than as a research tool. Although it will remain an expensive tooL,

it might be the only means of accurately computing complex flows for which lower order

models fail.

The majority of LES reported in the literature involve incompressible fluid flows that are

homogeneous in at least two spatial directions. While computation of such flows has greatly

contributed to the development of LES, the computation of more complex flows is required.

In this paper, the method is applied to a spatially-developing compressible boundary layer

flow. Several issues related to the effect of the numerical scheme on the simulations are

investigated. A high-order, upwind biased, implicit, finite difference scheme is employed in

the simulations and subgrid-scale (SGS) modeling is performed using the dynamic model.

Mathematical Formulation

In large-eddy simulation (LES) one computes explicitly only the motion of the large-scale

structures. The nonlinear interactions with the small-scales are not resoh'ed by the numerical

grid and are modeled. The governing equations for the large eddies in compressible flows
are obtained after filtering the continuity, momentum, and energy: equations and recasting

in terms of Favre averages. The filtering operation (denoted by an overbar) maintains onh'

the large-scales and can be written in terms of a convolution integral.
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where f is a turbulent field, Gi is some spatial filter that operates in the i-th direction and

has a filter width, Ai (usually equal to the computational grid spacing in that direction) and

D is the flow domain.

The resulting equations of motion for the large eddies are as follows:

0F 0(Vai) _0,
0--7+ Oz_

o (-_a_)+ + 7, +
o--;- L \ ox: oz,

(2)

(3)

)Oat 0 (_. oT_f _o_ ( oa_ o aj 2 oak _j +
o--[+ Oxi

(4)
The effects of the small-scales are present in the above equations through the SGS stress

tensor and the SGS heat flux,

_-,j= _ (_,,-_j- a_._j), (.5)

respectively, and require modeling. A tilde is used to denote Favre averages (f = p--f/-fi).

Also, p is the density, T is the temperature, ui is the velocity component in the i-direction

and k is the thermal conductivity. The specific heats at constant volume, C_, and at constant

pressure, Cp, are assumed in this study to be constant. The large-scale molecular viscosity,

_, is assumed to obey Sutherland's law,

with a Sutherland constant 2_ = 198.6°R. The large-scale pressure, p, is obtained from the

filtered equation of state,
= _R_. (s)

The molecular Prandtl number, Pr, is assumed to be 0.718. Note, that in deriving Eqs. (2)-

(4), the viscous, pressure-dilatation and conduction terms were approximated in a similar

fashion as by Erlebacher et al} For example, the pressure dilatation term is approximated

as follows:

In the above, the small-scale temperature dilatation terms in the parentheses are neglected.

since the>' are expected to have a small influence on the large-scales compared to the SGS

heat flux. qi. and also because they are very difficult to model. _''_'a

Subgrid-Scale Modeling

-['he dynamic SGS modeling concept was introduced bv Germano et al. 4 for LES of

incompressible flows and has attracted a lot of attention in the LES community during the

'2



recent years. Moin et al. 3 extented the dynamic model to compressible flows and Lilly s

suggested a refinement to both models that is now largely employed. Since then. further

refinements to the model have been proposed (VVong, a Ghosal et al., 7 Piomelli et aI.S).

The model for the deviatoric and isotropic parts of the SGS stress tensor is based on

Smagorinski's 9 and Yoshizawa's 1° eddy-viscosity models, respectively. The model constants,

however, are allowed to vary in space and time, and are computed dynamically, as the

simulation progresses, from the energy content of the smallest of the resolved large-scales.

This approach of calculating the model constants has been found to substantially improve the

accuracy and robustness of the LES method, since the model constants adjust dynamically

to the local structure of the flow and do not have to be specified a priori. In addition.

it has been found from incompressible flow simulations, that the dynamic model provides

the correct limiting behavior near solid boundaries, and adjusts properly by itself in the

transitional or laminar regimes. Although it can not predict properly backscatter, it allows

for some reverse energy cascade. A similar approach is followed for the SGS heat flux.

Dvnamic modeling is accomplished with the aid of a second filter (referred to as the test

filter," G) that has a filter width Ai in the i-th direction, that is coarser than the grid used

to perform the computations (Ai > Ai).

The model parameterization for the SGS stress and the SGS heat flux is given bv

rid-- _rkk_iJ = --2#t ( _'_ij - ! _kk(_ij)3
(i0)

Tk k = 2CI_/__21SI 2 , (ll)

qi = --ktOx i (12)

where #t = CAz-filSI, kt = #t/Prt, _gij = 0.5(O_t_/Ozj + Oaj/Oxi), ISI = (2Sij_ij)l/2, and

A = (AxAyAz) 1/3.

The model coefficients are computed from

---- A
14)
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where ^ denotes test-filtered quantities, A = (At-k2-X3) (5_ is the width of the test filter

in the ith direction), < > denotes averaging over the homogeneous spanwise direction, and

/2,j = _'_i_j - puj. (16)
P
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In the simulations, negative values for the eddy viscosity, #t, and eddy conductivity, kt.

were allowed, as long as the total viscosity (#T = fi + #t) and the total thermal conductivity

(kT = k" + kt) were non-negative. In terms, this restricts the amount of energy back-scatter
allowed, but avoids numerical instabilities due to anti-dissipation. A three-point top-hat

filter (derived using the trapezoidal integration rule) was employed for the test filtering.

Numerical Method

The DNS code of Rai et al. u was modified to perform LES using the dynamic model. The

DNS code solves the Navier-Stokes equations in non-conservative form. Since the problem

considered here does not exhibit discontinuities, the same approach was taken in the LES to

solve Eqs. (2)-(4). Spatial derivatives are computed using fifth-order-accurate upwind-biased

differences for the convective terms and fourth-order-accurate central differences for the

viscous terms. Fourth-order-accurate central differences are also used to compute the spatial

derivatives in the dynamic model. Time advancement is performed using an iterative fully

implicit second-order-accurate scheme. 1: Such schemes are unconditionally stable and allow
for accurate advancement using much targer time steps than explicit schemes. However, they

are more CPU intensive, since they involve the solution of a system of algebraic equations.

In addition, upwind schemes are much more stable than central difference schemes, since

they provide implicitly some artificial dissipation (this controls also aliasing errors).

Reference Case and Calculation Set-up

The experimental configuration of Shutts et al. la was chosen as a test case. It is that of

a zero-pressure gradient, flat-plate boundary layer flow at M = "2.'25. The Reynolds number

based on inlet conditions is 635000/in. The adiabatic wall temperature is 580°R and the

temperature at the freestream is 305°R.
The size of the computational domain and the type of boundary conditions are chosen

the same as in the DNS. _1 for consistency. The computational domain is divided along the

streamwise direction in three regions. The first region is 2.5in. long and contains the regions

of blowing and suction, as well as transition. The second region has uniform spacing in x.

is 2in. long, and contains the turbulent region. The third region is 6in. long and gradually

becomes very coarse to artificially, damp the turbulent fluctuations and ensure that the outlet

boundary will be non-reflective. The domain is 0.35in. wide in the span. and 3in. tall along

the wall-normal direction.

Periodic blowing and suction is imposed on the fiat plate, at a distance of 0.5in. from

the inlet, to trip the incoming flow to ulrbulence. The wall-normal velocity at the plate in

this region is as follows:
_, = Au,_f(.r)g(:)h(_) . ('_)0)
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where
f(z)=4sinO(1-cosO)/271/2 , 0=27r(z-z_)/(zb-x_),

lrnax lmax
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and Im_: = 10, m,_,_ = 5, z_ = 4.5in., Zb = 5in., ,4 = 0.04 is the disturbance amplitude.

/3 = 75000Hz, _t, Cm are random numbers (between 0 and 1), and Zm_: = 0.35in.

A no-slip boundary condition, together with an adiabatic wall temperature condition, is

imposed on the rest of the flat plate. The conditions at the inflow and outflow boundaries are

supersonic, except for the subsonic portion of the boundary layer. At the inflow boundary,

the dependent variables are fixed based on results from a laminar boundary layer analysis.

A non-reflecting boundary condition is specified at the outflow boundary, as was mentioned

above. Periodic boundary conditions are used in the homogeneous spanwise direction. The

computational domain is chosen such that it is long enough along the span to ensure that the

flow is homogeneous in this direction. Finally, a symmetry boundary condition is imposed

at the upper boundary, which is located well outside the boundary layer.

Preliminary Results

A number of simulations were conducted to examine several issues regarding the accuracy

of the LES method in computing spatially evolving compressible boundary layer flows using

finite difference schemes. The cases considered are summarized in Table 1.

Shown in figure 1 is the variation of the computed skin-friction coefficient, C/. along the

streamwise direction from simulations conducted at several different grid resolutions. The

results are compared against the experimental data, the turbulent correlation of White and

Christoff. 14 and the data from a marginally resolved DNS. u As the grid was refined the

accuracy'of the LES results improved. Case 2 uses 1/16 the number of grid points used in

the DNS. This coarse grid simulation clearly under-predicts the skin friction, and appears to

be at a much lower turbulence level close to the end of the well resolved region (x=8.Sin.)

When the grid was refined (case :3) the results improved. The number of grid points along the

spanwise direction was finally doubled (case 4) to capture better the large-scale structures.

That simulation employed 1/3 the number of grid points used in the DNS.

The variation of the Van Driest velocity (normalized by the shear stress at the wall) with

the normal distance from the wall at x=8.Sin, is shown in figure 2. Refining the grid again

improved the agreement with the compressible law of the wall. Although the grid used in

case 4 is only about a factor of 3 coarser than the DNS, there seems to still be room for

improvement in accuracy.
The skin-friction distribution from simulations performed at higher disturbance levels

(cases 5) is shown in figure 3. As expected, the location of transition is moved further

upstream as the disturbance amplitude is gradually increased. However. no difference on

C/ are observed at x=S.Sin., indicating that the flow there is fully turbulent. Therefore.

the differences seen in the LES in figures 1 and 2. are not due to any end stage (by-pass)

transition phenomena.



The effect of the numerical method wasexaminedby employinga lowerorder accurate
schemein the simulations. The convectiveterms were computed using third-order upwind
differences. Second-ordercentral differenceswere used in computing the diffusion terms
and the derivatives in the dynamic model. A significant drop in the computed skin-friction
coefficientwas found when the lowerorder schemewasemployed,as is shownfor cases7 and
8 in figure 4. This figure alsoshowsthat the lower order schemerequired about 2.65 times
more grid points to match the resultsof the higher-orderscheme.

The final paper will contain comparisonsof other boundary-layerstatistics, suchaspro-
files of turbulence intensities. In brief, they have been found to comparesimilarly to the
aboveresults.

Overall. the poor performanceof the LES is believedto be mainly due to the truncation
errors from the upwind scheme,rather than due to the dynamic SGSmodel. Theseerrors
artificially damp the turbulence of the smaller resolvedscales. Subgrid scalescontain less
energythan the grid scales. As a result, even accurate modeling of subgrid scaleswill not
overcomethe errors due to the finite differencescheme. Furthermore, since the dynamic
modelpredicts the eddy viscosityand eddy conductivity basedon the turbulence levelof the
smallest resolvedscales,it provides insufficient amounts of turbulent transport. Since the
highly accurate spectral methods are not appropriate for use in complex flows, a possible
solution to the problem would be to maintain only the information on the grid scalesthat
are accurately resolvedby a finite differencetype scheme,while modeling the effectsof the
scalesthat are omited (including, of course,the subgrid scales). This approach,however,
will substantially increasethe cost of the simulation, sinceit would requireexplicit filtering
of the contaminated modesat eachtime step using a high-order digital filter, and the useof
finer grids to ensurethat the remainingresolvedscalesadequatelyrepresentthe large-eddies.

Conclusions

A number of issuesinvolved in the LES of a spatially evolving compressibleboundary
layers areexamined by conducting simulations using a high-order-accuratefinite difference
schemeand the dynamic SGSmodel. The computational grid was refined successivelyto
improvethe agreementof the computedturbulence statistics with the availableexperimental
data and results from a marginally resolvedDNS. The grids usedin the LES were from 16
up to 3 times coarserthan the grid usedin the DNS. The computational domain wasfound
to be long enough for the flow to reach a fully-turbulent state and free of transients due
to the periodic blowing and suction mechanismemployedto by-passthe natural transition
process.

The resultssuggestthat the finite differenceschemehasa direct effecton the effectiveness
of the SGSmodel influencing greatly the accuracy of the simulations. The useof higher-
order schemeis found to improve substantially the results, sinceit improvesthe capture of
the smaller resolvedscales. Furthermore, it is recommendedto apply the model not only
at the sub__rid-scales,but alsoat the scalesthat arenot properly resolvedby the numerical
scheme.
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Table l: Caseparameters

Case Type Grid Size A

1 DNS, 4th order 971 × 55 × 321 0.04

'2

4

LES, 4th order

LES, 4th order

LES, 4th order

311 x 55 x 65

416 x55 x 129

416 x55 x257

0.04

0.04

0.04

5 LES, 4th order 311 x 55 x 65 0.10

6 LES, 4th order 416 x 55 x 129 0.06

T LES, 2nd order 311 x 55 x 65 0.04

8 LES. 2nd order 416 x 55 x 129 0.04
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Figure 1: Streamwise evolution of the skin friction coefficient: etfect of grid size.
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Figure "2: Profiles of Van Driest velocity normalized by wall-shear velocity at x=8.Sin. effect

of grid size.
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Figure 3: Streamwise evolution of the skin friction coe_cient; effect of disturbance amplitude.
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